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Unusual bifurcation in a constrained random walk system 

Jens Rieger 
Theoretische Physik, Universitat des Saarlandes, 6600 Saarbrucken, Federal Republic of 
Germany 
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Abstract. A random walk with fixed arc length and fixed endpoints which has to pass 
through k fixed points is considered. It is shown analytically that for the case k = 1 and 
equal distance R between the respective endpoints and the intermediate point a bifurcation 
occurs with respect to the arc length which the walk traces out between its origin and the 
intermediate point if R falls below a critical value. From numerical results it follows that 
this bifurcation also occurs in the following cases: when the intermediate point is not 
equidistantly positioned between the endpoints; when the walk is not confined to a point 
but to a hoop; and when the walk has to pass through several points ( k >  1). 

The model we discuss in this letter may be defined in its most general form as follows: 
a RW (or idealised polymer chain) consisting of N steps of length b is embedded in 
Rd where d 2 2 .  It starts at Ro=O, has to pass through k points Ri and ends at Rk+l .  
This model is termed the slip-link model in the polymer literature [ 1-51 for the polymer 
chain is forced to pass through imaginary hoops (the links) of negligible diameter 
located at {Ri} and is furthermore allowed to fluctuate (slip) through the hoops. We 
seek in the following the statistics of the respective arc lengths { I i }  displayed by the 
chain between any pair of points {R,...l, Ri}, i = 1,2, . . . , k+ 1, which are visited in a 
consecutive manner. As will be shown these statistics differ under certain conditions 
from what might be expected intuitively, i.e. the equipartitioned state I i  = N b / (  k + 1) 
is not always the most probable one. The present model system has already been very 
briefly outlined in [ 6 ] .  

Casting the problem into the conventional continuous walk representation [7] the 
normalised probability density function (PDF) for a specific configuration 
{ I I ,  1 2 , .  . . , I k t l }  subject to the condition ZIi = Nb = L with the points Ri being fixed is 
given by the following (formal) functional integral: 

where T~ = Z;l=o l j  and lo = 0. The normalisation constant X is obtained by integrating 
the integral in (1) over all possible configurations { l , } .  

First, we consider the case k = 1 and lRll = IR2 - RI/  = R. Using a known result for 
the unconstrained RW (see e.g. [7]) Pl({Ri}, { t i } )  can be given by the following condi- 
tional probability: 

d R 2 L  1 
2 b I ( L - l )  Pl({Ri}, { I J )  - [ I (  L - 2)]-”/” exp ( -- - 
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where l =  I ,  and I ,  = (L-  I ) .  The extrema of PI({&};  { I i } )  are computed by differenti- 
ation of (2) with respect to 1. One finds easily that PI({&}; ( 1 , ) )  exhibits one maximum 
or two maxima (separated by a minimum) depending on the value of R for the following 
values of 1: 

if R > R,= (Lb/4)'/' 
if R < R,. (3) I,,, = { 

L/2*(L2/4-LR'/b)'I2 

When considering the R dependence of lext [6] one obtains a figure which is strongly 
reminiscent of the temperature dependence of the order parameter M in a system 
exhibiting a second-order phase transition if we identify R: with T, and [I,,, - L/2] 
with M. This analogy can be further pursued by consideration of the free energy 
F = -kT ln[P,({R,}; {li})] of the RW system which is computed via the Boltzmann 
entropy. F (  1) is plotted in figure 1 for several values of R. The dependence of F (  1) 
on 1 - L/2 is again akin to the order parameter dependence of the free energy of a 
system with a finite number of degrees of freedom which undergoes a second-order 
phase transition in the thermodynamic limit [8]. But in contrary to a system exhibiting 
a phase transition where the height of the free energy barrier between the two branches 
of the bifurcation tends to infinity in the limit of infinite system size we find that in 
the present case the height of the free energy barrier A F  = F(L/2) - F(lext)  is for all 
R > O  and all N of the order of kT (cf also figure 1): 

AF=;dkT[l-  R2/R:+ln(R2/R2)] for R s  R,. (4) 
This fact has important consequences when discussing the dynamics of such a con- 
strained idealised polymer chain: the arc length 1 is not confined to I,,, but fluctuates. 
When averaging 1 over a time interval which is large compared with the inverse of the 
fluctuation frequency v one finds therefore ( 1 )  = L/2. The symmetry of the system is 
thus restored. The corresponding time averaging or, equivalently, ensemble averaging 
corresponds to the consideration of the Gibbs entropy where it is summed over all 
possible configurations with respect to I. The reason why the behaviour discussed in 
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Figure 1. Dependence of the free energy of a random walk system constrained by one 
slip-link on the arc length that the walk displays between the origin and the slip-link for 
several values of the real space distance R between the respective points: R = 1.8RC, R = R, ,  
and R = 0 . 6 R C ,  from top to bottom. (See text for the definition of R c . )  
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this letter was not found in previous work on the slip-link and related models [ l -51 
lies in the fact that those authors were concerned directly with the Gibbs entropy. 

For the case k >  1 it seems not to be possible to show explicitly in such a simple 
fashion as above that an instability of the symmetric state (where li = lo= L/(k+ 1)  
holds for all i) occurs. However, in case that IRi+l -Ril = R holds for all i an 
investigation of the asymptotic behaviour of the respective PDF pk({ Rj} ;  (Ii}) implies 
that an instability must occur. For that purpose consider the ratio w of the PDF of an 
asymmetric state where at least two I j ,  4 exist with li f 4 to the PDF of the symmetric 
state. One easily obtains 

This relation follows from (2) when extended to the case when the RW visits k points 
in between its two endpoints. For R + 0 it is found that w > 1 for any asymmetric 
configuration in the sense defined above. On the contrary, for large R ( R  >> 1) the 
exponential dominates the behaviour of w. Since the bracket in the argument of the 
exponential is positive for all possible configurations of the arc lengths suspended 
between the set of points { R I } ,  with the exception of the symmetric distribution, one 
obtains w < 1 for large R, i.e. the symmetric distribution is the most probable one. 
Unfortunately it is not known whether or how R,  is affected by the introduction of 
several fixed points R,. 

Next we study the case where k = 1 and rl = I RI - Rol f I R2 - R,I = r 2 .  Using a PDF 

similar to the one given in (2) we obtain numerically [9] that if rl differs not too much 
from r2 a bifurcation occurs but this time displaying a profile of F (  I )  which is asymmetric 
with respect to L/2. The analytical derivation of the value uc(R, L) = Ir2- rIIc up to 
which a double minimum potential in F exists is made impossible since it is determined 
by an equation of sixth order. 

In the discussion above it was tacitly assumed that for a specific configuration the 
visit of the points R, defines uniquely arc lengths I , .  In two and three dimensions this 
is of course not the case for the set of walks (in their continuous representation) which 
visit a given point at least twice is not of measure zero. Furthermore, it might be 
possible that the observed bifurcation is an artefact which might be due to the use of 
the Gaussian PDF in (2) because the finite extensibility of a R W  with fixed arc length 
is not respected. This is the reason why a Monte Carlo simulation has been carried 
out for a RW on Z2 with fixed endpoints and k = 1 intermediate point with distance R 
from the endpoints through which the chain must pass. As usual, dynamics were 
introduced to allow for a diffusion through phase space [lo]. Again a bifurcation of 
the type mentioned is observed. 

A further point of interest is the question of whether a bifurcation still occurs for 
chains that do not pass through points but through areas whose centres are fixed at 
the points RI .  This problem cannot be dealt with by use of the method proposed so 
far due to the self-similar structure of the continuous chain [l l] .  Note that if one 
allows for transversal fluctuations of the chain in the areas (or hoops) mentioned above 
and through which the chain should not pass more than once, one is faced with the 
problem that-irrespective of how small the area is chosen-when integrating 
Pk({Rt} ;  { I , ) }  over this area configurations are always included where back-tracking of 
the chain through the hoop is found. Such a repeated threading through a hoop is 
not consistent with the present formulation of the slip-link model. In order to obtain 
some insight into this problem a Monte Carlo simulation was done. I choose for the 
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simulation the freely jointed chain [12] being constrained by a hoop with radius ab 
( a > 0) located at R I .  Dynamics are introduced in the usual way [ 131. The slip-link 
condition is enforced by the constraint that the part of the, chain which passes through 
the slip-link cannot cross the boundary defining the hoop. Furthermore no segment 
of the chain except the one threading through the hoop is allowed to cross the area 
defined by the hoop. Preliminary results (with N = 17 and a = 1) show that this system 
exhibits qualitatively the same bifurcational behaviour as the systems with vanishing 
slip-link diameter discussed above. We conclude that the bifurcation in the constrained 
RW system is not an artefact which might be due to the vanishing areas of the slip-links 
as imposed, e.g., in (1) by the delta functions. 

Finally, I would like to propose that the constrained RW presented with its bifurca- 
tional behaviour might be another interesting example of a simple system exhibiting 
a bifurcation. Such systems are of some pedagogical value in the field of synergetics 
[14, 151. 

I would like to thank Professor A Holz for a critical reading of the manuscript. The 
support of this work by the Deutsche Forschungsgemeinschaft within Sonderfor- 
schungsbereich 130 is gratefully acknowledged. 
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